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Abstract An alternative method for solving homogenous and non-homogenous
linear differential equation systems used in chemical kinetics and pharmacokinetics
on the basis of flow graph principles has been proposed. Classical method of solv-
ing these systems with flow graphs involves the employment of Laplace transforms
before depicting a flow graph and the inverse Laplace transforms after using the
Mason’s rules. A short description of flow graph algebra has been presented. One
model very often encountered in pharmacokinetics was solved. Our proposed method
is simpler and more direct, eliminating the Laplace transforms. The calculus is made
directly on the base of the flow graph representing the image of reaction scheme
(pharmacokinetic model).

Keywords Flow graph theory - Linear differential equation systems -
Chemical kinetics - Reactions mechanism - Pharmacokinetics model

1 Introduction

A flow graph is a diagram that is formed on base of a set of simultaneous linear algebraic
equations or a linear differential equations system, which are written starting from a
set of elementary chemical reactions included into a mechanism. The flow graph is
used to represent the evolution of a physical system and to obtain the relationships
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between the system variables. By using the Cramer’s method [1] with determinants
one could solve the system.

A flow graph consists of a network in which nodes (or vertices) are connected by
directed edges (or branches). Each node represents a system variable, and each edge
connecting two vertices acts as a signal multiplier. An arrow placed on the edge indi-
cates the direction of the signal flow and the multiplication factor is indicated along
the edge [2,3]. This multiplication factor is named transmittance. It can be obtained
from the coefficients of the equations. The signal flow graph depicts the flow of signals
from one point of the system to another and gives the relationships between the signals.
It represents the value of the determinant of the system [4].

1.1 Definitions related to flow graphs

Before discussing flow graphs certain terms should be defined [4]:

Node (Vertex) is a point representing a variable or a signal. For example, in chem-
istry it represents a chemical species undergoing some transformation.

Weighting of an edge (transmittance) is areal or complex gain between nodes. Such
gains may be expressed in terms of transfer function between two nodes. In chemical
kinetics it represents a pseudo-first- or a true first-order rate constant, measuring the
frequency with which a chemical event takes place. By multiplying it with the actual
concentration of the species in the vertex of the outgoing branch and the volume of
the system, the chemical flux in the indicated direction, is obtained.

Edge (branch) is a directed line segment joining two nodes. The gain of a branch
is the transmittance.

Input node or source is a node that has only outgoing edges. This corresponds to
an independent variable. In chemical kinetics it represents the reactant species.

Output node or sink is a node that has only incoming edges. This corresponds to a
dependent variable. In chemical kinetics, it corresponds to a reaction product.

Mixed (internal) node is a node that has both outgoing and incoming branches and
corresponds to a dependent variable.

A flow graph example is presented in Fig. 1.

For a given system a flow graph is not unique. More equivalent flow graphs can
be drawn for a given system by writing the system equations or the corresponding
determinants in a different way [5-7].

Fig.1 An example of a flow
graph; “A” is an input node

(or source); “I;”, “Iy” are output
nodes (sinks); a, b, ¢, d, e and f
are weighting of the edges;
“B”,*“ C” are the internal nodes

(O——
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Scheme 1 Methane pyrolisys mechanism

2 The alternative flow graphs algebra

In Physical Chemistry, particularly in chemical kinetics, the system of equations and
corresponding determinants can be written starting with the reaction mechanism. On
the basis of these determinants, the flow graph can be constructed according to a set
of rules [5]. For the methane pyrolysis at 1,600 °C, for example, the simplified mech-
anism consists of the following elementary steps, disregarding the reverse reactions
[8]:

Step I (the initiation) indicates the input source (S) of radical species, which, in
this case, is commune for both of the radicals (CHy). Steps II and III describe the
interchange of these radical species while the last two steps (IV and V-the interrup-
tions) provide the final output products (CoHg and H»). The accepted values of the
rate constants (k;) and the value of starting CH4 concentration are also given [9] so
the numerical solutions for radical species can be found, after its replacement.

Considering that the quasi-steady-state approximation is valid [10, 1 1] (the concen-
trations of radical species are very low and at steady-state) the system of differential
equations, based on the mechanism from Scheme 1 of reactions 1, is:

d (CH}

_ [dt ] = 0 = (ko[CH4] + 2k4[CH3]) - [CH3] — k3[CH4] - [H*] — k;[CHa4]
d[H®

B [dt ) 0 = —kalCH4 - [CH3] + ([CH4] + 2ks[HE)) - [H*] — K [CHL]

(D

To simplify, the following symbols are used further on: B = CH3, C = H?, the final
products CoHg, Hy with 17 and I, respectively; the pseudo-first order rate constants
a = ki[CHy] = d, b = k2[CHy], ¢ = k3[CHy], 2k4[CHS] = e, 2ks[H®] = f. With
these, the system (2) becomes:

(b+e)B]—c[C]=a ?)

—b[B]+ (¢ +H[C] =d
The elements on the main diagonal are equal to minus the sum of all other ele-
ments of the corresponding column, to which an output value (u;) is added: e.g.,
bii = —> bji + uj, for the first column. The output values are here e and f, respec-
tively. Often, some of the output elements are null, which means that the rates of
transformation of the corresponding species in a final product are zero. Although the
free coefficients, a and d are identical here, for a better understanding of the flow
graph depicting rules, they both will be kept. The rules are as follows [5]:
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Fig. 2 The flow graph of the b f
main determinant (the e ——> — > |,
consumption flow graph)

I

1. The main determinant is written as:

B C
_Bilb+te -—c
A_C'—b c+f 3

2. The variables become nodes in the graph: the unknowns B and C become the mixed
nodes; /1 and 1> turn into output nodes (they have only incoming branches).

3. The branch transmittances can be obtained from the coefficients of the system as
follows: (a) the element of line 1, column 1 represents all the transmittances of
the edges, which are outgoing from the node B with the sign plus in front of it;
(b) the element of column 1, line 2 represents the transmittance of edge outgoing
from B and incoming to C with the sign minus in front of it, because it means a
decrease of the B variable. The output value e becomes the transmittance of the
edge connecting B node with the output node /1. The column 2 is obtained in a
similar way.

The flow graph is presented in Fig. 2:

The reciprocal of the above discussion is also valid (the main determinant of the
system can be derived from this flow graph).

The main flow graph, which is derived from the main determinant of the system, is
named the consumption flow graph [S]. The arrows indicate the direction of the flux
from variables (nodes) to the outputs nodes. The system evolution brings about a loss
in a variable values (B and C) and a gain of the values of the output nodes (I} and I).

As stated above, in order to calculate the dependent variables of the system, these
are considered target species or output nodes [5]. The corresponding determinants for
their formation are:

B A
B|b+e a
C|-b d

A

where a 4)
d

is the matrix of the free coefficients. They are the transmittances of the independent
variable (the input node or source A). The plus sign is attributed to @ and d in the
determinant and in its corresponding flow graph because positive gains of B and C
occur from the input node A. These determinants are named the formation determi-
nants because their flow graphs indicate a gain of the chosen variable starting from
the input node.

A C
B |a —C
AB:Cd Lf and A=
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Fig. 3 The formation flow
graph for Ag

For example, the flow graph of the formation determinant Ag, where B becomes
an output node (Fig. 3), and the input node (A) is the source of variable B, is:

This model of transposing the determinants into flow graphs suggests the evolu-
tion of species involved in a complex reaction scheme (mechanism) as a function
of time. It also results that the flow graph, depicted in this way, is the image of the
scheme or the model. The reciprocal of the above discussion is also valid. The deter-
minants of the system can be derived from the corresponding flow graphs. In the
case of the differential equation systems the determinant deduced from the consump-
tion flow graph is the secular determinant from which we can extract the eigenvalues

[5].

3 Pharmacokinetic model

In the pharmacokinetic (PK) analysis, there appear numerous cases in which the drug
absorption and disposition are quite complex and therefore cannot be characterized by
classical pharmacokinetic models. For example, the case by monitoring the drug and
its metabolite is complex one because there are involved a presystemic metabolization
to form also an active substances and distribution processes [12—14]. In that case one
has to write a linear system of differential equations describing each kinetic process
and to use them for finding the corresponding pharmacokinetic parameters.

The differential equations are easy to write and implement in specialized software,
this being the main advantage of the numerical analysis procedure [15]. However, this
technique has also some limitations. Numerical solutions are always approximations,
and this may cause errors, e.g., in the estimation of derivatives (as required for many
fitting algorithms). Another disadvantage of using differential equations is that the
process to reach convergence is rather slower as compared to the one with analytical
solution. This may be important when we deal with a great amount of data, especially
in population PK analysis.

Analytical solutions provide the calculation of pharmacokinetic parameters with
more accuracy, which is indeed an advantage. The analytical solutions could be
obtained for linear differential equations systems by using the classical integration
[16], the operator method, secular equation and eigenvalues method, constant vari-
ation method [17,18] and flow graph method which entails the Laplace transforms
[4,6,7,19,20].

By means of our flow graph method for these complex pharmacokinetic models
the analytical solution can obtain directly by inspection the graphical representation
of the model.
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Scheme 2 Pharmacokinetic C
model for fluoxetine and
norfluoxetine

k13| k31
3
kp3 Dl-

4 Methodology

In order to find the analytical solution with our method using flow graphs, real pharma-
cokinetic system is chosen. It is an example from a bioequivalence study of fluoxetine,
[21,22].

To describe the absorption and disposition of fluoxetine to norfluoxetine, a com-
plex model has been considered. It is presented in Scheme 2. This model involves
a first-order kinetic process for absorption of fluoxetine and bicompartmental dis-
tribution. Fluoxetine can be transformed into norfluoxetine by both presystemic and
systemic metabolism. Fluoxetine and norfluoxetine can be also eliminated from the
human body by either metabolic or non-metabolic paths. As the intravenous data for
fluoxetine and norfluoxetine were not available, the distribution volume for both drugs
was considered equal. A lag time for absorption was also considered (Tlag).

The significance of the notations in this scheme is as follows: A stands fluoxetine at
administration place, B stands for fluoxetine in central compartment, C for fluoxetine
in peripheral compartment and D for norfluoxetine in central compartment; the rate
coefficients are: koj-absorption rate constant for fluoxetine, ko, and k> presystemic
and systemic metabolism rate constant of fluoxetine to norfluoxetine, kj3 and k3 the
distribution rate constants for fluoxetine, k¢ and ko the elimination rate constants for
fluoxetine and norfluoxetine.

4.1 The alternative flow graph theory

The system of linear differential equations, which characterize the mechanism from
Scheme 2, is presented in the group of Eq. 5. We symbolize the value of concentrations
of A, B, C, D species with x, y, z and w, respectively:

X = —(kot +ko2) - x
%%=k01-x—(k10+k12+k13)'}’+k31'Z
E—kizy—kyz v
%—Vtvzkoz~x+k12~y—k20'w

The initial conditions are: x(0) = Dose of administered fluoxetine (Xp); y(0) = z(0) =
w(0) = 0.
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Fig. 4 The equivalent mechanism (a) and consumption flow graph (b)

On the base on the graph theory [3,23], the determinants of the above system can
be found [5]. The general mathematical solutions for this kind of systems are the sum
of exponential functions [5-8] (e.g, y = Cp = Bj - exp(—y1t) + B> - exp(—yat) +
B3 - exp(—y3t)). In our theory [5], the pre-exponential coefficients (in this case, B;)
represent the ratio of the corresponding formation and consumption determinants (in
accordance with Cramer’s rule [1]); the exponential factors (e.g., y1, ¥» and y3) and
the consumption determinants are calculated from the consumption flow graphs which
is the image of a equivalent mechanism.

In this approach a new mechanism equivalent to the model from Scheme 2 is drawn
considering that every substance is transforming in a final product (a substance which
doesn’t transform any more) with a constant rate, even it is zero (see Fig. 4a). The
“consumption” flow graph [5] is the image of the new mechanism with the y decreased
from every output transmittance (see Fig. 4b). Its name suggests that the system evo-
lution bring about a loss (consumption) in all variable values and a gain of the output
values (the final products I I», I3 and I4) in how the arrows indicate the direction of
the flux from all nodes to the output nodes.

The “formation” flow graph [5] for a species is constructed considering the species
of interest as being a target one (the final product; it has no output edges) and by adding
anew node (the input node or the source which represents the initial conditions). They
are named like this because indicate a formation and a gain of the chosen variable
starting from the input node (the source S).

Considering the flow graph from Fig. 4b and using the reciprocal rules of depicting
a flow graph, we obtain in the Eq. 6 the secular determinant of the system (5):

A B C D
Alkor + koo — v 0 0 0
A= B —ko1 ki + ki3 +kio—y —k3 0 |_ 0 (6)
C 0 —ki3 ksi—y O
D —ko2 —ki12 0 ko—-vy
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Fig. 5 The formation flow Xo Kot k3
graph for B species E

Kooy

It results immediately that:

A = (koo — y) (ko1 + ko2 — Y)[(=y)(ki2 + ki3 + kio — )
+ kai(kia +kio—y)1 =0
A = (koi + koo — V)[y? — y(kia + ki3 + kia + k1o + kap)
+ k31 (k12 + k10)1(k2o — ) =0 (7

From the above equation it can be found the exponential factors and the expressions
of consumption determinants [5] (A¢): y1 = ko1 + ko2. 2, v3 (the solutions of the
square equation), and y4 = koo.

n
And A.(y;) = H (vj — vi), where n is number of the species involved  (8)
j=1
i#]j

The formation flow graph for B (Fig. 5) is depicted from the consumption flow
graph, considering the interest species being a target one (a final product, one elim-
inates the output edges of B species) and by adding the new input node (the source,
which represents the initial conditions). Also, considering the Scheme 2, it could be
noticed that there are not any connections starting from the node D in the direction of
the node B. For this reason, the D species and its outgoing branches, which are not
participating at B formation, will not be appearing in the formation flow graph of B
species; in this case, n becomes 3 (A, B and C: species involved).

I and symbolizes the output node of A species and its transmittance is the sum of
all its outgoing branches transmittances when the node D is missing.

Using the reciprocal rules of depicting a flow graph, the formation determinant is
obtained and has the following form:

A S C
Alkor + koo —y Xo 0 ©)
A=B —ko1 0 —k3
C 0 0 kyi—y
It results:
A, = Xo - ko1 - (k31 —y) 1i=1,2,3;(A,Band ) (10)
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Fig. 6 The formation flow
graph for D

The final solution is presented below:

_ Xokoi (k31 —y)e "t Kokoi(ksi — y2)e 2t Xokoi (ka1 — y3)e 3

V2 =vDW3 —v1) V=23 =) V1= v3) (2 —v3)
(11)

The formation graph for D, which provides the formation determinant, is shown in
Fig. 6.
The formation determinant for D species is (n = 4 species involved: A, B, C, D):

A B C S
Alkor + ko — y 0 0 Xo
A= B —ko1 kio+kis+kio—y —k3i O (12)
C 0 —k13 ks3i—y 0
D —koo —ki2 0 0

The calculus of the above determinant leads to the following expression:

Ap, = Xo - ko1 - k12 - (k31 — 1) + Xo - ko2 - [(k31 — yi) (Kio+ki2 — yi)+kiz - (—yp)]
= Xo - ko1 - k12 - (k31 — %) + Xo - ko2 - [¥2 — yi(kio + k12 + ki3 + k1) (13)
+k31 - (k1o + ki2)]
i=1,2,3,4;

So, the analytical solution for D species is:

Xo - (km k2 - (k31 —¥1) koo - [ —v1 (kio+kia+kiz+k3)+k3g - (k10+k12)]) et
2=vDW3=vD)(a—vy1)

X - ko1 - ki - (kaj—y2) -7 72t Xg - kop - ky2 - (k31 —y3) - e V3!
V1=v2)(r3—v2)(ya—72) V1=v3)(r2—v3)(va—v3)

Cp =

Xo - (km kg - (ka1 —y4) +koz - [v§ —va (Kjo+kio+ki3+k3p) k3 ~(k10+k12)]) ceTvat
V1—v4) (v2—va) (Y3—v4)

+
(14)
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5 Conclusions

Using the proposed method, based on flow graph theory, one can obtain the analytical
solution for complex pharmacokinetic models directly by inspecting the graphical rep-
resentation of the model. It won’t require the writing the homogenous or non-homog-
enous linear differential equations system but only the solving of the determinants
obtained on the base of the pharmacokinetic model.
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